Factor Analysis for Multiple Testing
A general approach for differential analysis
of genome-scale dependent data

Differential analysis

Biological issue Identify the genes which expressions are significantly linked
to the experimental condition thanks to microarray biotechnology

Microarray experiments \

I]:> Statistical solution Multiple Testing High-dimensional dataset

For each gene k: test of the null hypothesis H, of no association between its expression

Gene Expressions (Y . iti
level Y, and the environmental covariate X P ) Exp. Conditions (X)

* Huge number of simultaneous tests, usually several thousands

¢ High dimensional setting « small n, large p »
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K- Large-scale correlation structure, due to biological links among genes
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I‘ Explain the dependence among a huge set of variables thanks to a small number of latent
variables 7 called the Specific variability
(uniqueness)

Common variability

* Number of factors g chosen to reduce the variance of the number of false positives in multiple tests
k- Estimation of the model parameters with an EM-algorithm to deal with high-dimension Z 5 j

True null hypotheses proportion

* Effect of correlation on usual test -

statistics and p-values distribution under * Adjusted test Stat'St’CSf conditionally ‘ Key parameter of most Multiple Testing Procedures (MTP)
the true null hypothesis: centered and scaled version of usual test
statistics * High variability of 7t, estimation as its * Most estimation methods rely on the
*Widen distribution Narrow distribution : Considering the FA model, they are variance depends on the correlation  behaviour of the p-values density near 1:
== Theorical null distribution independent: ===+ Theorical null distribution under or over estimation of T, in

presence of correlation
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f T T T ! T H = H — 3 For each scenario 1000 datasets are
4 2 0 2 4 3240123 4 20 2 4 301234 . —— . T . simulated (true value of 7t,=0,8)
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g 8 s Ais Efron’s criterion that scores the effect of
ﬂMore small p-values More high p-values ﬂ ﬂ correlation on test statistics distribution, the
P ﬂ ghp correlation more correlation the more A's variability
around o:
ERIN 2 3 3 A= : Tests statistics are independent
= i j = S = i i A<o: Histogram of tests statistics is
g o N g o - t narrowed compared to the theorical null
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‘ P-values histograms dissent from ﬁ Distribution of p-values = U[0; 1] ‘Using the factor structure to define a conditional estimator induces an
\ independent case (U[o; 1]) \ accurate estimation of 7t and therfore increases the power of MTP
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Power of Multiple Testing Procedures FDR estimation I
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3 . variance when leads to more power. = estimation of the actual FDP N

= correlation rises . E in presence of correlation =7
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I ° B FDP estimation from

e ;: proportion of common variability in scenario j ; [ dependence effects T T T T T

1000 simulated datasets for each scenario iR 00 02 04 06 08
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R package : FAMT
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