Factor Analysis for Multiple Testing A general approach for differential analysis of genome-scale dependent data

Differential analysis Microarray experiments Biological issue Identify the genes which expressions are significantly linked to the experimental condition thanks to microarray biotechnology Statistical solution Multiple Testing For each gene k: test of the null hypothesis H₀ of no association between its expression Gene Expressions (Y) level Yk and the environmental covariate X Microarrays • Huge number of simultaneous tests, usually several thousands • High dimensional setting « small n, large p »

• Large-scale correlation structure, due to biological links among genes

Factor Analysis

Effect of correlation on usual test

- Explain the dependence among a huge set of variables thanks to a small number of latent variables Z called the common factors
- Number of factors q chosen to reduce the variance of the number of false positives in multiple tests
- Estimation of the model parameters with an EM-algorithm to deal with high-dimension

Ajusted test statistics and p-values

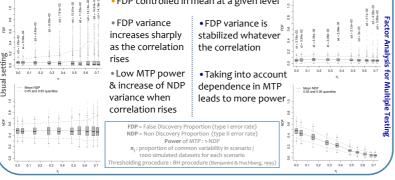
 T_k

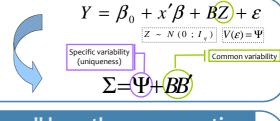
 $T_k^z = \frac{\sigma_k}{\psi_k} (T_k - \tau_z)$

 Adjusted test statistics: conditionally statistics and p-values distribution under centered and scaled version of usual test the true null hypothesis: statistics • Widen distribution • Narrow distribution Considering the FA model, they are independent: -1012 More small p-values More high p-values

P-values histograms dissent from independent case (U[0; 1])

Power of Multiple Testing Procedures FDP controlled in mean at a given level

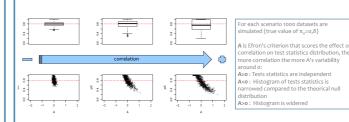




High-dimensional dataset

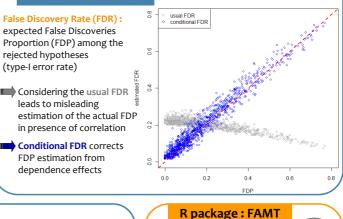
Exp. Conditions (X)

True null hypotheses proportion $\pi_0(t) = \frac{\#(p_k > t)}{t}$ Proportion of true-null hypotheses 1-tKey parameter of most Multiple Testing Procedures (MTP) • High variability of π_0 estimation as its • Most estimation methods rely on the variance depends on the correlation behaviour of the p-values density near 1: under or over estimation of π_0 in presence of correlation



Using the factor structure to define a conditional estimator induces an accurate estimation of π_0 and therfore increases the power of MTP

FDR estimation



References

- B. Efron (2007) Correlation and large-scale simultaneous significance testing JASA
- C. Friguet, M. Kloareg & D. Causeur (2009) A factor model approach to multiple testing under dependence JASA
- M. Langaas, B.H. Lindqvist & E. Ferkingstad (2005) Estimating the proportion of true null hypotheses with application to DNA microarray data JRSS.B

Distribution of p-values = U[0; 1]

• J.T. Leek & J.D. Storey (2008) A general framework for multiple testing dependence – PNAS

Usual

Chloé FRIGUET ~ Maela KLOAREG ~ David CAUSEUR

http://www.agrocampus-ouest.fr/math/FAM1