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Differential analysis

Biological issue Identify the genes which expressions are significantly linked 

to the experimental condition thanks to microarray biotechnology

Statistical solution Multiple Testing 

For each gene k: test of the null hypothesis H0 of no association  between its expression 
level Yk and the environmental covariate X

•Huge number of simultaneous tests, usually several thousands

•High dimensional setting « small n, large p »

Gene Expressions (Y) Exp. Conditions (X)
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Microarray experiments

High-dimensional dataset

•High dimensional setting « small n, large p »

•Large-scale correlation structure, due to biological links among genes

Factor Analysis
Explain the dependence among a huge set of variables thanks to a small number of latent 
variables Z called the common factors
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•Number of factors q chosen to reduce the variance of the number of false positives in multiple tests

•Estimation of the model parameters with an EM-algorithm to deal with high-dimension

Specific variability 
(uniqueness)

Common variability
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•Widen distribution •Narrow distribution

Ajusted test statistics and p-values True null hypotheses proportion 

•Estimation of the model parameters with an EM-algorithm to deal with high-dimension BB ′+Ψ=Σ

Theorical null distribution

Proportion of true-null hypotheses

Key parameter of most Multiple Testing Procedures (MTP)  

•Most estimation methods rely on the 
behaviour of the p-values density near 1:  
under or over estimation of π0 in 

•High variability of π0 estimation as its 
variance depends on the correlation
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Theorical null distribution

•Effect of correlation on usual test 
statistics and p-values distribution under
the true null hypothesis:

• Adjusted test statistics: conditionally 
centered and scaled version of usual test 
statistics
Considering the FA model, they are 
independent:

More high p-valuesMore small p-values

Theorical null distribution under or over estimation of π0 in 
presence of correlation

correlation

For each scenario 1000 datasets are 
simulated (true value of π0=0,8)

A is Efron’s criterion that scores the effect of 
correlation on test statistics distribution, the 
more correlation the more A's variability 
around 0: 
A=0 : Tests statistics are independent
A<0 :  Histogram of tests statistics is 
narrowed compared to the theorical null 
distribution
A>0 :  Histogram is widened

Theorical null distribution independent:

FDR estimation

P-values histograms dissent from 
independent case (U[0; 1])

Distribution of p-values = U[0; 1]

False Discovery Rate (FDR) : 
expected False Discoveries
Proportion (FDP) among the 
rejected hypotheses
(type-I error rate)

Using the factor structure to define a conditional estimator induces an
accurate estimation of π0 and therfore increases the power of MTP
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Power of Multiple Testing Procedures

•FDP controlled in mean at a given level 

•FDP variance is 
stabilized whatever 
the correlation

•FDP variance 
increases sharply 
as the correlation 

R package : FAMTReferences

Considering the usual FDR 
leads to misleading 
estimation of the actual FDP 
in presence of correlation

Conditional FDR corrects 
FDP estimation from 
dependence effects

(type-I error rate)

FDP = False Discovery Proportion (type I error rate)
NDP = Non Discovery Proportion  (type II error rate)

Power of MTP : 1-NDP
πj : proportion of common variability in scenario j

1000 simulated datasets for each scenario
Thresholding procedure : BH procedure (Benjamini & Hochberg, 1995)

•Taking into account 
dependence in MTP 
leads to more power

•Low MTP power 
& increase of NDP 
variance when 
correlation rises
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R package : FAMT

http://www.agrocampus-ouest.fr/math/FAMT
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