1 Download

Download the FAMT macro (Excel file) and open it.

8 N	icrosof	t Excel -	macroFA	MT.xls													1
9	Eichier	Edition	Affichage	Insertion	Format	Outils	Données	Fenêtr	e RExcel	2		Tapez u	ne ques	tion	•	- 1	ć
1	💕 🖬	🖪 🔒	🖪 🛕	NG 🛍	X 🗈 😭	L - 🛷	17 - 6	- 8	😣 Σ	- <u>2</u> ↓	Z↓	11 -0	100%	- 6		€	
	E44	-	f\$x									_					
		A		E	3		C		D		E			F			1
2				Eactor And	lucie			_									
5		ΑΛ	ΛΙ	or Multiple	a Tacting			_									
:	-			or wainple	e resuite	1									-		
5								_							-		
				Start		Meth	od	F	Results of			Clear					
3									the FA								
3																	
0						_											
1						_		_		_							
4								-									
3															-		
5										-					-		
6								-							-		
7						-											
8																	
9																	
0								_									
1								_							_		
2								_							-		
3															-		
4								-							-		
6						-									-		
7																	
8																	
9																	
0																	
1						_		_							_		
2						_		_							_		
3								-							-		
14 15															-		
5																	
4	P H	Macro /	Expressio	n 🖌 Covaria	ates / Ar	notatio	ins /		<			1111				1	>

Figure 1: Illustration of the FAMT macro

The macro contains 4 sheets:

- The "Macro" sheet displays the results of the different steps of the Factor Analysis for multiple testing package.
- The "Expression" sheet contains the gene expressions data frame: genes are in rows without row names and arrays in columns (the column names are the identifier of arrays) (see Figure ??).
- The "Covariates" sheet gives information about the experimental conditions: the identifier of each row (arrays), as used in the column names of Expression, is provided, with the value of the main explanatory variable in the testing issue and possibly other covariates (see Figure ??).
- The "Annotations" sheet provides additional information about the response variables of the multiple testing procedure to be used to describe the results. One column must be named ID and gives the variable (gene) identifier (see Figure ??).

The data must be stored in each sheet as above-mentioned. Note that Covariates and Annotations datasets are optional. The number of columns of expression must correspond to the number of rows of covariates and furthermore expression and annotations must have the same number of rows. If covariates dataset is not provided the procedure aims at testing the significance of the mean expression. If annotations dataset is not provided, a basic annotations dataset is created with row indices as variables identifiers.

Import your data (copy and paste the data in each sheet or use the excel menu via import extern data). Be careful to the decimal mark (comma or point). The following figures present the different sheets with the data provided in the package. This dataset concerns hepatic transcriptome profiles for 9893 genes of 43 half sib male chickens selected for their variability on abdominal fatness.

Schier	Edition Af	Schane	Insertion	Format Outli	Doonies Fenitre	REvel 2						Tapez upe question		1
o na		a na l	40 M	V Do Cal	S Louises refere		Z 49 20 1000		i al	10				E
2 21		4 L L L	10	8 -0 1 0 - 1		5 Z · Z+	X4 🛄 🛃 100%		10		2 = =		• • • •	×.
~	4	14	10	B	0		D	F		F		6		-
10	- 0		F11	0	F12	F13	0	F14		F15	F16		F17	1
	-0.0	02057		-0,144835	-0,13	1843	-0.000894		-0.035271	-0,1	33745	-0,123823		
	-0,18	36889		-0,011924	-0,143	115	-0.043581		-0,153505	-0.2	56680	-0,183490		
	-0,3	50407		-0,143317	-0,00	497	-0,193203		-0,256922	-0,0	19270	-0,205845		
	0,10	18080		0,064627	0,28	980	0,099555		0,241328	0,2	57680	0,114571		
	-0,15	51604		-0,230892	-0,193	390	-0,242203		-0,192490	-0,2	49230	-0,248844		
	0,18	39689		-0,154709	-0,058	996	0,167352		0,169125	-0,1	50706	0,060736		
	0,18	37671		-0,271709	-0,122	817	0,068077		0,006106	-0,1	61760	0,095957		
	-0,18	37991		0,151818	-0,043	478	-0,121134		-0,073901	-0,1	66373	-0,213461		
	-0,0	17604		-0,255151	-0,02	331	-0,263554		-0,030439	-0,0	90858	-0,271865		
	-0,2	52205		-0,144283	-0,03	868	-0,025949		-0,255755	-0,2	14968	-0,248510		
	-0,2	33079		-0,085489	-0,10	906	-0,120408		-0,060209	-0,0	18398	-0,249365		
	-0,0	33374		-0,113714	-0,050	607	0,090565		0,039140	-0,1	38537	0,186539		
	-0,0	59760		-0,143874	0,22	1317	-0,047932		-0,012303	0,0	42181	-0,173867		
	-0,0	32674		-0,163572	0,08	736	0,201761		-0,141723	-0,2	40139	-0,374142		
	0,0	12346		0,128600	0,06	142	0,161835		0,185729	0,0	96568	-0,131097		
	-1,19	96023		-0,220222	-0,89	310	-0,968520		-1,047250	-0,7	13300	-0,730100		
	-0,0-	\$6229		0,037433	0,13	856	-0,121055		0,083406	-0,1	13072	-0,091296		
	0,10	07635		0,090735	0,30	726	0,130818		0,173074	0,4	34478	0,273412		
	0,0	00651		0,140054	0,14	279	0,013443		0,091244	0,0	79827	-0,118469		
	-0,4	54999		0,078300	-0,27	897	-0,515711		-0,375059	-0,1	14493	-0,267519		
	-0,2	52523		-0,017760	-0,203	715	-0,072043		-0,340127	-0,2	39619	-0,279001		
	0,0	18788		0,007753	80,0	960	0,139868		0,271550	0,0	35836	0,038401		
	0,3	1951		0,068281	0,319	624	0,227267		0,242879	0,2	34211	0,022041		
	0,9	24035		0,428159	0,714	116	1,072838		0,688045	0,6	36425	0,555813		
	-0,2	36714		0,026992	-0,03	299	-0,162092		-0,052461	-0,2	91398	-0,281091		
	0,10	13982		0,236888	0,29	616	0,289274		0,325463	0,1	20499	0,098750		
	-0,17	71898		0,009596	0,02	254	0,170499		-0,162130	-0,0	81374	-0,321373		
	-0,2	52686		-0,144178	-0,216	787	-0,331525		-0,386894	-0,2	95694	-0,417176		
	0,15	36776		0,287396	0,355	738	0,558815		0,315187	0,4	91644	0,134547		
	0,19	99109		0,186214	0,24	1369	0,415506		0,291502	0,1	58095	0,265234		
	0,3	35374		-0,195540	0,56	126	0,706354		0,197906	0,2	46407	-0,048384		
	-0,17	4458		0,204344	0,213	891	0,135728		-0,247060	-0,0	70112	-0,193713		
	-0,0	38731		-0,170182	-0,063	713	0,245054		0,005378	-0,2	35797	-0,065268		
	0,0	1500		-0,037236	0,12	061	0,091218		0,204861	0,0	75923	-0,075631		
	-0,1	54921		-0,231306	-0,17	164	-0,133575		-0,091953	-0,1	54953	-0,208336		
	0,0	16208		0,032278	-0,17	669	-0,078911		0,193518	0,1	30420	0,134281		
	-0,0	51396		-0,032289	-0,10	715	-0,094666		-0,206362	0,0	17301	-0,469970		
	-0,19	30617		-0,027044	0,52	984	0,190439		0,107741	0,0	36733	0,082212		
	0,10	01110		0,077206	0,24	1917	0,402632		0,097564	0,0	90514	0,193201		
	-0,4	31204		-0,186600	0,27	652	-0,121551		-0,295469	-0,2	92074	-0,298433		
	0,0	4886		-0,291421	0,17	1371	0,146697		0,032376	0,0	37064	-0,039290		
	-0,0723	32796		-0,004891398	0,40112	6/2	U,16052338	0,0	J25943198	0,2381	255.28	-0,161784656		
	U,36690	J/627		0,029573687	0,136579	436	U ;25782265	0,2	290085267	0,3061	20257	U,265754521		
	-0,1661	14154		-U,110934356	-0,02812	1906	0,055523952	-0,3	371109903	-0,3145	90329	-0,362461243		
	U,1310	12541		0,388962297	0,10626	641	0,320263162	0,1	101650694	0,135	/3182	U,330879171		
	U,1094	50002		-0,09011419	0,08123	361	U,U56969785	0	1,167/5135	0,2330	40678	U,07970448		
	-0,0341	12086	(.	0,083024486	0,27628	148	0,0/2893331	0,1	1/6447096	0,1317	11248	0,173266586		
N/I	Macro) Exp	pressio	n (Covari	ates (Annota	tions /			3	a) u					

Figure 2: An example of the Expression sheet

Another sheet, called "graph", is automatically created to store all the graphs provided by the functions of the package.

The buttons in the "Macro" sheet allow to run the package by step. The CLEAR button clears the "Macro" sheet and the "graph" sheet.

빤	Eichier	Edition Affichage	Insertion F	ormat Qubis	Donnees Hei	Detre K	Excel Z		
	💕 🖬	🖪 🖂 🖾	🍄 📖 i 🕉	🗈 🛍 = 🏈	1	S	Σ - 2↓ 2↓	100	% 🖃 😧 📮
	A1	− f≽ F	actor						
_	A	B	C	D	E	F	G	н	1 I
1	Factor	ArrayName	Pds9s	Mere	Lot	Af			
2	F	F10	2317	GMB05625	12	10,09			
3	F	F11	2389	GMB05554	12	9,409			
4	F	F12	2418	GMB05562	L4	8,925			
	r r	F13	2184	GMB05625	1.2	0,713			
7	r c	F14	2410	CMP05500	12	0,494			
-	r r	F 15	2371	CMP05593	13	7 407			
	C C	F10	2300	CMP05505	12	C 700			
9	E .	E19	2200	GMD05625	16	6 147			
1	F	F19	2972	GMB06592	12	6.863			-
2	F	F2	2/235	GMB05593	13	18 1			
3	F	F20	2388	GMB05555	15	5 783			
4	F	F3	2213	GMB05555	12	16.45			-
5	F	F4	2413	GMB05555	12	16.38			
ñ	F	F6	2532	GMB05592	13	14.57			
7	F	F7	2575	GMB05599	L3	14.22			
8	F	F8	2618	GMB05554	L3	10,37			
9	F	F9	2561	GMB05589	L5	10,14			
0	L	L1	2480	GMB05555	L2	-25,54			
1	L	L10	2495	GMB05562	L5	-10,37			
22	L	L11	2336	GMB05599	L2	-9,352			
23	L	L13	2403	GMB05593	L2	-6,657			
24	L	L14	1994	GMB05554	L3	-6,04			
25	L	L15	2332	GMB05599	L2	-5,547			
26	L	L16	2248	GMB05555	L2	-5,321			
27	L	L17	2444	GMB05554	L3	-3,751			
28	L	L18	2265	GMB05555	L2	-3,741			
29	L	L19	2351	GMB05599	L4	-2,576			
0	L	L2	2450	GMB05555	L2	-23,52			
31	L	L20	2368	GMB05562	L4	0,403			
2	L	L3	2369	GMB05555	L4	-19,17			
B	L	L4	2515	GMB05625	1.5	-14,4			
4	L.	1.0	2302	GMB05625	12	-12,28			
0	L.	1.7	2148	GMB05592	14	-11,86			
0	L.	L/	2313	GMB05562	1.6	-11,51			-
57	L.	10	2351	GMB05562	LS	-10,62			
0	L	L9 NC1	2482	GMD05589	12	-10,48			
0	NC	NC2	2259	GMB06699	14	2,717			
11	NC	NC3	2490	GMB06592	13	3 131			
12	NC	NCA	2580	GMB05625	15	5,508			-
13	NC	NC5	2000	GMB05555	12	0.756			-
14	NC	NC6	2158	GMB05593	1.4	1.58			-
5			2150	01110000000		1,00			
16									
17									
18									
	5 N.		Courrist	Annotatic	mr /				

Figure 3: An example of the Covariates sheet

	Eichier E	dtion 4	atar / ffichae	ne Tos	ertion	Format I	Cubic Données Fenêtre REvrel ?			
				49	API V	0.0		G	8	
	A1	• • • •	6		1990 - 179				2	
_	A	B	1	C	D	E	F		G	-
1	ID.	Block	- C(lumn	Row	Length	Name		· ·	
2	RIGG1471	4	1	1	1	70	c0GAPDH cntrl/", \"ENSGAI T00000014280 1\")"			
3	RIGG0499	7	1	8	1	70	Genome Hit Contini 750			
4	RIGG0611	5	1	10	1	70	Genome Hit Contig228.14			
5	RIGG1371	2	1	11	1	71	ENSGALT00000011478.1			
6	RIGG0837	7	1	12	1	65	ENSGAL 60000006479 1			
7	RIGG0160	3	1	13	1	70	Similar to 008525 (008525) Reverse transcriptase			
8	RIGG1857	0	1	17	1	70	ENSGALT0000024992.1			
9	RIGG0499	3	1	20	1	70	Genome Hit Contig121.85			
10	RIGG0125	1	1	1	2	70	Similar to CYPB MOUSE (P24369) Peptidyl-prolyl cis-trans isomerase B p			
11	RIGG0505	8	1	2	2	71	Genome Hit Contig25767.1			
12	RIGG0205	0	1	5	2	70	Similar to Q9NPI6 (Q9NPI6) Transcription factor (Hypothetical protein			
13	RIGG1969	8	1	14	2	70	ENSGALT00000028051.1			
14	RIGG1777	7	1	15	2	70	ENSGALT00000022852.1			
15	RIGG1521	0	1	16	2	70	ENSGALT00000015680.1			
16	RIGG1553	8	1	18	2	70	ENSGALT00000016530.1			
17	RIGG0318	5	1	19	2	70	Weakly similar to OBMT88 (OBMT88) GH24154n			
18	RIGG1892	3	1	20	2	70	ENSGALT00000025910.1			
19	RIGG0197	9	1	21	2	70	Weakly similar to K1C0_MOUSE (061414) Keratin, type I cytoskeletal 15 (Cytoke			
20	RIGG1516	2	1	1	3	70	ENSGALT00000015537.1			
21	RIGG0092	2	1	2	3	70	Similar to Q9NW21 (Q9NW21) Hypothetical protein FLJ10364			
22	RIGG2043	3	1		3	65	similar to somuty 4 (LOC427643) mRNA			
23	RIGG1821	8	1	5	3	70	ENSGALT00000024036.1			
24	RIGG0310	7	1	10	3	70	Similar to BASO, HUMAN (Q01954) Zinc finger protein basonuclin			
25	RIGG0576	3	1	12	3	65	Weakly similar to QBC678 (QBC678) Hypothetical protein			
26	RIGG1967	5	1	13	3	70	P2Y nuring center 3 (P2Y3) (Nucleoside dishoshate recentor) [Source:SWISSPROT			
27	RIGG1296	n	1	17	3	70	Filamin (Fragment) (Source:SPTREMBI			
28	RIGG2002	7	1	21	3	70	cAR-Actin cntrll", \"Gallus gallus heta-actin mRNA, complete cdo\")"			
29	RIGG1706	6	1	1	4	70	ENSGALT00000020887.1			
30	RIGG1100	3	1	5		70	ENSCALT0000000359 1			
31	RIGG0576	9	1	11	1	70	Genome Hit Contind 544			
32	RIGG1180	2	1	13	7	74	DNA tanaisamerasa I (Gallus gallus). (Source RefSeg			
33	RIGG1215		1	19	7	70	ENSCALT0000006808.1			
34	RIGG0919	4	1	21	1	70	ENSGAL 00000013123.1			
35	RIGGOGS	4	1	1	6	70	Genome Hit Contines 38			
36	RIGG1781	8	1	3	6	65	Adenosine recentor 2B (Fragment), ISource SPTREMBI			
37	RIGG1669	7	1	7	6	70	Brain-derived neurotrophic factor precursor (RDNE). ISource SWISSPROT			
38	RIGG1256	n	1	11		70	ENSGALT000000000909 1			
39	RIGG0652	ñ	1	12		65	Same gene AV164697			
40	RIGG00002	5	1	13	6	70	Ganoma Hit Contind 90			
40	RIGG2045	3	1	16	6	65	eimilar to interlaukin enhancer binding factor 3 (LOC/30965), nartial mRNA			
47	RIGG0162	7	1	18	6	70	Genome Hit Contint 315			
43	RIGG1927	5	1	21	4	70	ENSCALT00000026918 1			
44	RIGG0874	7	1	- 21	6	72	ENSGAL 0000000000 10.1			
45	RIGG0913	3	1	10	6	70	ENS.GAL G00000012568 1			
40	DIG G0047	5	1	10	6	70	Conome Hit Contid02.5			
40	RIGG004/	6	1	12	6	70	Callus callus partial mPNA for hypethatical protein, class 9k3			
40	DIG G0877	7	1	15	6	70	ENSCAL CODODODOR981.1			
	NO00077	x70 / E	1 VINCOUS	ion / 1	Couvriste	1 000	atations /			
De	ssin • 🕞 🗍	Formes au	run ess	aues *						

Figure 4: An example of the Annotations sheet

2 The DATA button

The DATA button enables you to define the datasets, to create the FAMT data and to summarize the FAMT data. You have to select the available datasets (expression, covariates and/or

:0	Public Public ASSider	Transfer Frank Ortho	maine Fraibur	of well a				
	Coner Edition Amonage	i inseroon rormai, Quois ig	onnees regetre		100 20 1000	a a la contra	10	
2		✔ 164 \$6 +03 400 + 04 .		5 - • Z+ X+	100%	· · · ·	10	
	A A	B	С	D	F	F	G	Н
1					-			
2	.							
3		Factor Analysis						
4		for Multiple Testing						
6								
7		DATA FAMT mo	del RE	SULTS	CLEAR			
8								
9								
10								
12								
13								
14			1					
15								
16				Data				
17				-				
10					Data			
20				- I				
21								
22					○ Select the da	ita		
23				-				
24				-	C Statistics of	the data		
25				-				
27								
28				C	IK	Cancel		
29								
30								
31								
32								
34								
04								-

Figure 5: The DATA button

annotations), then some other dialog box allow to precise the class of variables.

2.1 Statistics of the FAMT data

When you have defined the data frame, you can ask for summary of the FAMT data by clicking on Statistics of data.

The results are displayed in the "macro" sheet. The function provides:

- For Expression: the number of tests which corresponds to the number of rows, the sample size which is the number of columns.
- For Covariates and Annotations: classical summaries.

312 -	Statistics of Expression	C C	D	c	F	C.	
~	D	U U	U	E .	F	G	
	Factor Analysis						
LUN	for Multiple Testing						
	1						
	DATA FAMTI	nodel R	ESULTS	CLEAR			
	Statistics of Expression	-					
	Number of tests Sample size	9893					
	Jampie area						
	Statistics of Covariates	-					
	Factor	ArrayName	Pds9s	Mere CME05555-10	Lot	Af	
	L :19	Class :charact	er 1st Qu.:2284	GMB05625: 7	L3:11	1st Qu.: -8.0042	-
	NC: 6	Mode :charact	er Median :2371	GMB05562: 5	L4: 8	Median : 2.7166	
			Mean :2370	GMB05599: 5	L5: 8	Mean : 0.2365	
			3rd Qu.:2474	GMB05554: 4		3rd Qu.: 8.6037	
			Max. :2618	GMB05589: 4 (Other) : 8		Max. : 18.1024	
				(other) . o			-
	Statistics of Annotations						
	ID	Block	Column	Row	Length	Name	1
	Length:9893	23 : 237	9 : 502	20 : 500	Min. :60.00	Length:9893	1
	Class :character	25 : 237	6 : 501	15 : 498	1st Qu.:70.00	Class :character	
	mode :character	9 : 232	12 : 499	10 : 493	Mean :69.57	Mode :character	
		29 : 230	14 : 494	17 : 481	3rd Qu.:70.00		
		43 : 229	16 : 491	9 : 468	Max. :75.00		
		(Other):8497	(Other):6907	(Other):6970			
			_			-	
			-				

Figure 6: Display of the results of statistics of the FAMT data

3 The FAMT MODEL button

The FAMT model button enables to implement the FAMT complete multiple testing procedure. When you click on the FAMT model, a form with 4 text box is opened (see Figure ??):

- The first box determines the experimental condition and the optional covariates.
- The second box corresponds to the experimental condition on which the test is done.
- The third and fourth box are optional and they refer to the number of factors. You can select a number of factors to fit the FA model (in the third box) or this number is estimated. The last box allows to change the default value of the maximum number of factors tested to estimate the optimal number of factors.

If you don't fill the box, the **default values** are kept for the fitting of the FA model:

- The experimental condition is the column 1 in the "Covariates" sheet (x=1)
- The test is done on the 1st column of the previous vector (x[1]). If x=1, test = 1 too.
- The function estimates the optimal number of factors
- The maximum number of factors tested to estimate the optimal number of factors is 8.

In our illustrative example (data provided with the FAMT package), we test the significance of the relationship between each gene expression and the abdominal fatness (6th column of covariates), taking into account the effect of the dam (4th column of covariates). So, in the first box, we write 4 and 6, column numbers corresponding to the experimental condition and covariates (column numbers are separated by semicolon), and in the second box, we type 6, column number of the explanatory variable of interest (see Figure ??).

] Eichier Edition Aff	ichage Insertion For	ma <u>t</u> Qutils Donnée	s Fegêtre	RExcel 2							
i 🖬 🖬 🕞 🗿 🖂	0.17 0.18	12.0.	(* -) 🔂 💡	Σ • 24 X	100%	• 🕡 💂 Arial	• 10	GIS		🔹 🤧 %	. 0
B12 •	fx.										_
A	E	3	C	D	E	F	G	Н	1	J	
-											
	The star for short										
Ι 🕨 Δ Ν Λ	Pactor Analysi	5									
	for Multiple Te	sting .									
					- I						
	DATA	FAMT model	RES	JULTS	CLEAR						
			_	_							
										_	
					(1		1		
					Define the	FAMT model					
							FAMT model				
					- Cond						
					Expl	anatury variables					
					Colu	nn numbers of the exp	lanatory variables in		_		
					"cov	ariates" sheet (separa	te variables with ";")				
					-						
					Expl	anatory variable of	interest				
					Colu	nn number of the expl	anatory variable of				
					11/01	034					
					Num	ber of factors (opti	onal)				
					Choo	se the number of fact	ors to fit the factor				
					anaj	SIS model					
					Haxi	num number of factor	s: if you want to		_		
					char	ge the default value ()	3), enter the new				
					maxi	num number of factor	2				
								_	_		
						ОК		Cancel			

Figure 7: Dialog box of the FAMT model button

The optimal number of factors used to fit the model is given in the "Macro" sheet. The "graph" sheet, automatically added in the excel file, contains three graphs (see Figure ??):

- The values of the variance inflation criteria for each number of factors are plotted
- The histograms of p-values and adjusted p-values.

If you want to use the FAMT method as a classical multiple testing procedure without any modeling for the dependence structure across the variables, choose 0 for the number of factors to adjust the FA model.

This step builds the "FAMT model", and enables you to analyse results (with the Results button). You can fit different models but the last one is used for the analysis of the results.

Echier	Edition Affichage	Insertion Fi	ormat Qubis	Données I	Fegêtre RE	xcel <u>?</u>							
) 💕 🖬	1 a a l a a l	🌮 📖 i X	🗅 🙇 • 🛷		- 1 5 8 0, 1	Σ - <u>2</u> ↓ <u>2</u> ↓	100%		Arial	- 10	- G I §		😟 📑 🛛
F1	∙ ¢ A	f		_									
A	B	C	D	E	F	G	н	1	J	K	L	M	N
Factor	ArrayName	Pds9s	Mere	Lot	Af								
F	F10	2317	GMB05625	L2	10,09								
F	F11	2389	GMB05554	L2	9,409								
F	F12	2418	GMB05562	L4	8,925								
F	F13	2184	GMB05625	L4	8,713								
F	F14	2416	GMB05555	L2	8,494								
F	F15	2371	GMB05593	L3	8,074								
F	F16	2366	GMB05589	L3	7,467								
F	F17	2266	GMB05625	L3	6,799								
F	F18	2472	GMB05599	L5	6,147								
F	F19	2239	GMB05592	L2	5,863							L	_
2 F	F2	2476	GMB05593	L3	18,1		Define th						X
F	F20	2388	GMB05555	15	5,783								-
F	F3	2213	GMB05555	12	16,45				FA	MT model			
F	F4	2413	GMB05555	L2	16,38					and the der			
F	F6	2532	GMB05592	L3	14,57								
F	F7	2575	GMB05599	L3	14,22								
F	F8	2618	GMB05554	L3	10,37		Ехр	lanatory vari	ables				
F	F9	2561	GMB05589	L5	10,14								
L	L1	2480	GMB05555	L2	-25,54		Cau	min numbers of	the explanator	y variables m	4:6		
L	L10	2495	GMB05562	L5	-10,37		cos	anaces sneed	(separace varia	scies with ()			
2 L	L11	2336	GMB05599	L2	-9,352								
3 L	L13	2403	GMB05593	L2	-6.657		Exp	lanatory vari	able of interes	st			
L	L14	1994	GMB05554	L3	-6.04		C (2)	no number of	the evolutions	variable of		_	
5 L	L15	2332	GMB05599	L2	-5.547		inte	rect	and experiences y	10,000,01	6		
5 L	L16	2248	GMB05555	L2	-5,321								
L	L17	2444	GMB05554	L3	-3.751		Nun	ber of factor	s (optional)				
3 L	L18	2265	GMB05555	L2	-3.741		-						
a L	L19	2351	GMB05599	L4	-2.576		cho	ise the number	r of factors to f	it the factor		_	
ι	12	2450	GMB05555	L2	-23.52		anar	ysts model			1		
L	L20	2368	GMB05562	L4	0.403		Hax	inun nunber o	f factors: if you	, want to		_	
2 L	L3	2369	GMB05555	L4	-19.17		char	nge the default	value (8), ente	r the new			
3 L	1.4	2515	GMB05625	15	-14.4		max	inum number o	f factors				
-	15	2302	GMB05625	12	-12.28								
L	L6	2148	GMB05592	12	-11.86				_			_	
5 L	17	2313	GMB05562	L4	-11.51			OK			Cancel		
ī L	LB	2351	GMB05562	1.5	-10.62								
3 L	19	2482	GMB05589	15	-10.48								
NC	NC1	2259	GMB05625	13	2,717				_	_			_
NC	NC2	2496	GMB05589	14	2 826								
NC	NC3	2382	GMB05592	13	3,131								
NC	NC4	2580	GMB05625	15	5 508								
NC	NC5	2155	GMB05555	12	0.756								
NC	NC6	2158	GMB05593	14	1.58								
		2100			1,000								
7													
3													
3										-			
1													
1													
2					-								-
		10.11	. /		- (1			

Figure 8: Example of a FAMT model

Figure 9: Display of the results of a FAMT model

4 The RESULTS button

The RESULTS button proposes three functions to analyse and display the results (see Figure ??). The first function provides information about the rejected genes, the second one gives an estima-

tion of the proportion of true null hypotheses, and the last one helps the user to describe and interpret the factors.

3													
8)	Eichier	Edition	Affichage	Insertion	Format	Qubis Données	Fegêtre RExcel	2					
	😂 🖬	B @	1 🗳 🖪	1 🧐 🛍 🗌	8 🗈 😭	(i) - (🖓 🥺 Σ -	21 21 100 🔤	100% 🔹 😡	Arial	- 10 - G	S I II I	.
-	D15	-	fx.				100 000						
		A		E	3	C	D	E	F	G	Н	1	
1													
2				Contex Any	hain								_
3		ΑΛ	ΛΙ.	Pactor Ana	aiysis								_
4		<u>, </u>	(11)	for Multiple	e Testing								
6													-
7				Start		Method	Results of	Clear					
8							the FA						
9													_
10						Resul	ts of the FA mode						_
11								Posulte		<u> </u>	4		
13								Results					-
14							• Statistics of th	e model					
15													
16							treshold is 0.151	of the faise discov	ery rate control (ol	the default			_
17													-
19							starting value:	Enc	a value:				-
20							Increment:						
21													
22							Identification of	f the significant gen	ves: genes identifical	tion and			
23							checking the bo	IX.	noose another varia	ules by			_
24													-
26													-
27						,	Estimation of th	e proportion of	true null hypot	hesis			
28													
29							C FAMT factors de	escription					-
30													
32							Select the axes ()e	ngth 2 vectors) sp	ecitying				
33							one nectors to plot						-
34							Select the externa	il covariates (colun	nn г				
35							numbers of covari	ates separated by	50				-
36							Select the externa	appotations (col)	mo -				-
38							numbers of annota	itions separated by	y";")				+
39													
40													
41							ОК		0	Incel			
42													-
44											1		-
45													-
46													
47													
48	1.10	Marrie	Francis	- 10	Ann / -	antations /							
-	P 11	macro g	Expressio	IT & COVARIA	sues / Ar	riotauoris /				I.S.			
De	isin + 🗟	Formes	automatiq	365 - 🔪		의 🧠 🗘 📓	🖾 🔍 • 🚄 • 🛓						

Figure 10: Dialog box of the RESULTS button

4.1 Statistics of the FAMT model

The selection of "Statistics of the FAMT model" gives the number of rejected genes according to raw analysis and FAMT analysis, the annotations characteristics of significant genes, and the estimated proportion of true null hypotheses.

The number of positive tests is provided for each level of False Discovery Rate (FDR) control chosen by the user (the default value is 0.15). If you want to change the level of FDR control, you have to define the range of the FDR control. In our illustrative example, we select a range from 0 to 0.3 with increment of 0.05 (see Figure ??).

The significant genes are listed with the genes identification and array names in the original data frames. You can change the identifiers (add some characteristics for example) by clicking in the check box "identification of the significant genes" (see Figure ??).

A new dialog box is displayed and you can select the identifiers among the annotations variables. Results are shown in the "Macro" sheet (see Figure ??). The list of positive genes is given for the highest level of FDR.

If you don't fill the box of the "Statistics of the model", the default values are selected : the FDR control is 0.15 by default, the significant genes are characterised by the genes identification and their name in the Annotations file.

icrosoft Excel - dataF/	MTmacroFAMT.xls						
Eichier Edition Affichae	e Insertion Forma <u>t</u>	Qutils Données	Fegêtre RExcel <u>?</u>				
🐸 🖬 💪 🚑 🚳 🕻	1 🦈 🛍 i 🗴 🗈 🛍	L • 🛷 🔊 • (° -	- 🎧 😣 🏿 - 🏹 👬	100%	- 🕜 🖕 Arial	• 10	- G
B12 - fx	P		0	E	F	0	
A	D		C D	E	r	6	
FAMT	Factor Analysis for Multiple Testing						
	DATA	FAMT model	RESULTS	CLEAR			
		Resul	ts of the FA model				
				Results			
			Statistics of the mo	det			
			Precise the range of the	false discovery rate	control (optional):		
			Starting value:	End value:	0.2		
					0,3		
			Increment: 0,05	5			
			Identification of the s array names by defai checking the box.	ignificant genes: gene ult. You can choose ar	is identification and other variables by		
			- Estimation of the pro	oportion of			
			true null hypothesis				
			C FAMT factors descri	ption			
			Select the axes (length) the factors to plot	2 vectors) specifying			
			Select the external cova	ariates (column			
			numbers of covariates s	eparated by ";")			
			Select the external anno	stations (column			
			numbers of annotations	separated by ";")			
							-
			ок		Cancel		
							-
							-
				-			-

Figure 11: Statistics of the model and choice of FDR control

Figure 12: Choice of the identifiers of the significance genes

4.2 Estimation of the proportion of true null hypotheses

The function estimates the proportion of true null hypotheses (pi0). The histogram of the p-values with the estimate of pi0 null line is plotted in the "graph" sheet. An additional graph is displayed

B28 💌	▲ List of positive ger	ies							
A	B		C	D	E	F	G	н	
	Factor Analysis								
ΓΑΛ	for Multiple Testi	na							
			L						
	DATA	FAMT mod	el R	ESULTS	CLEAR				
	Number of posit	ive tests for	each level of	FDR control					
	alpha		Raw analysis	FA analysis					
		0		0 0	1				
		0,05		0 2					
		0.15		0 6					
		0,2		0 6					
		0,25		0 8	8				
		0,3		0 11					
	Fetimation of th	a proportion	of true pull b	motherer					
	Loundation of a	e proportion	or a de namin	pomeses					
			0,973853	13					
	List of positive	lenes							
			10	Marris					
		6722	DIG C05/36	Same gene V	54200				
		3885	RIGG04393	Weakly simila	r to CAE03429 (CAE03429) OSJN	Ba0032F06.12 protein	1	
		1119	RIGG15056	ENSGALTOOD	00015290.1				
		3484	RIG:G05478	Weakly simila	ir to Q8IUG4 (Q8	IUG4) Rho GTPas	e activating protein (F	ragment)	
		463	RIGG09893	ENSGALTOOD	00000452.1				
		124	RIGG12578	ENSGALTUUL	00008042.1				
		9859	RIGG03/55	Weakly cimils	047.1 # to OBAW78.0	RAW(78) Voltage	notoccium chon	nel cubunit M	iD
		3925	RIGG10355	Transforming	protein p54/c-ets	-1. ISource:SWIS	SPROT	ner audunit in	
		4968	RIGG05365	Genome Hit C	ontig7.437				
		3855	RIGG13434	Troponin T fas	t skeletal muscl	e isoforms. [Sourc	e:SWISSPROT		

Figure 13: Display of the results of the Statistics of the model

showing the spline curve used to estimate pi0 (see Figure ??).

Figure 14: Display of the results of the pi0

The algorithm used to estimate the proportion of true null p-values is the "smoother" method (this method uses the smoothing spline approach proposed by Storey and Tibshirani (2003)).

4.3 FAMT factors description

This function provides diagnostic plots to interpret and describe the factors using external information either on genes or arrays. To use this option, the FAMT data must contain "Annotations" dataset. You have to fill three items:

- the axes: a length 2 vector specifying the factors to plot
- the covariates
- the factors of annotations.

The default value of the axes is the factors 1 and 2.

The function takes all covariates except those used in the model and the array name.

The function takes all variables of annotations of factor type.

In our illustrative example (see Figure ??), the axes are the two first factors, the external covariates are the column 3 (Pds9s: the body weight) and the column 5 (Lot: the hatch), the external annotations are the columns 2 (Block) 3 (Column) 4 (Row) which correspond to the location on the microarray and the column 5(Length: oligonucleotide size).

Figure 15: FAMT factors description

Graphical devices are plotted in the "graph" sheet if the FAMT model has more than one factor (see Figure ??).

The tables of p-values are displayed in the "Macro" sheet: p-values of the test whereas the score of each factor are affected by the selected covariates, and p-values of the test whereas the score of each factor are affected by the selected annotations.

Figure 16: Display of the results of the FAMT factors description